MySQL索引及调优篇
1、索引的数据结构
1.1、为什么使用索引
索引是存储引擎用于快速找到数据记录的一种数据结构,就好比一本教课书的目录部分,通过目录中找到对应文章的页码,便可快速定位到需要的文章。MySQL中也是一样的道理,进行数据查找时,首先查看查询条件是否命中某条索引,符合则
通过索引查找
相关数据,如果不符合则需要全表扫描
,即需要一条一条地查找记录,直到找到与条件符合的记录。
如上图所示,数据库没有索引的情况下,数据分布在硬盘不同的位置上面
,读取数据时,摆臂需要前后摆动查找数据,这样操作非常消耗时间。如果数据顺序摆放
,那么也需要从1到6行按顺序读取,这样就相当于进行了6次IO操作,依旧非常耗时
。如果我们不借助任何索引结构帮助我们快速定位数据的话,我们查找Col2=89这条记录,就要逐行去查找、去比较。从Col2=34开始,进行比较,发现不是,继续下一行。我们当前的表只有不到10行数据,但如果表很大的话,有上千万条数据
,就意味着要做很多很多次磁盘I/O
才能找到。现在要查找Col2=89这条记录。CPU必须先去磁盘查找这条记录,找到之后加载到内存,再对数据进行处理。这个过程最耗时间的就是磁盘1/O(涉及到磁盘的旋转时间(速度较快)、磁头的寻道时间(速度慢、费时))
假如给数据使用二叉树
这样的数据结构进行存储,如下图所示
对字段Col2添加了索引,就相当于在硬盘上为Col2维护了一个索引的数据结构,即这个二叉搜索树
。二叉搜索树的每个结点存储的是(K,V)结构
,key是col2,value是该key所在行的文件指针(地址)。比如:该二叉搜索树的根节点就是:(34,8x07)。现在对Col2添加了索引,这时再去查找Col2=89这条记录的时候会先去查找该二叉搜索树(二叉树的遍历查找)。读34到内存,89>34;继续右侧数据,读89到内存,89==89;找到数据返回。找到之后就根据当前结点的valu快速定位到要查找的记录对应的地址。我们可以发现,只需要查找两次
就可以定位到记录的地址,查询速度就提高了。
这就是我们为什么要建索引,目的就是为了减少磁盘工I/0的次数
,加快查询速率。
1.2、索引及其优缺点
1.2.1、索引概述
MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构。
索引的本质:索引是数据结构。你可以简单理解为“排好序的快速查找数据结构”,满足特定查找算法。这些数据结构以某种方式指向数据,这样就可以在这些数据结构的基础上实现高级查找算法
索引是在存储引擎中实现的
,因此每种存储引擎的索引不一定完全相同,并且每种存储引擎不一定支持所有索引类型。同时,存储引擎可以定义每个表的最大索引数
和最大索引长度
。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。有些存储引擎支持更多的索引数和更大的索引长度。
1.2.2、优点
- 类似大学图书馆建书目索引,提高数据检索的效率,降低
数据库的IO成本
,这也是创建索引最主要的原因。 - 通过创建唯一索引,可以保证数据库表中每一行
数据的唯一性
。 - 在实现数据的参考完整性方面,可以
加速表和表之间的连接
。换句话说,对于有依赖关系的子表和父表联合查询时,可以提高查询速度 - 在使用分组和排序子句进行数据查询时,可以显著
减少查询中分组和排序的时间
,降低了CPU的消耗
1.2.3、缺点
增加索引也有许多不利的方面,主要表现在如下几个方面:
- 创建索引和维护索引要
耗费时间
,并且随着数据量的增加,所耗费的时间也会增加。 - 索引需要占
磁盘空间
,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,存储在磁盘上
,如果有大量的索引,索引文件就可能比数据文件更快达到最大文件尺寸。 - 虽然索引大大提高了查询速度,同时却会
降低更新表的速度
。当对表中的数据进行增加、删除和修改的时候,索引也要动态地维护,这样就降低了数据的维护速度。
因此,选择使用索引时,需要综合考虑索引的优点和缺点。
提示:
索引可以提高查询的速度,但是会影响插入记录的速度。这种情况下,最好的办法是先删除表中的索引,然后插入数据,插入完成后再创建索引。
1.3、InnoDB中索引的推演
1.3.1索引之前的查找
先来看一个精确匹配的例子:
1 |
|
1、在一个页中的查找
假设目前表中的记录比较少,所有的记录都可以被存放到一个页中,在查找记录的时候可以根据搜索条件的不同分为两种情况:
以主键为搜索条件
可以在页目录中使用
二分法
快速定位到对应的槽,然后再遍历该槽对应分组中的记录即可快速找到指定的记录。以其他列作为搜索条件
因为在数据页中并没有对非主键列建立所谓的页目录,所以我们无法通过二分法快速定位相应的槽。这种情况下只能从最小记录
开始依次遍历
单链表中的每条记录,然后对比每条记录是不是符合搜索条件。很显然,这种查找的效率是非常低。
2、在很多页中查找
大部分情况下我们表中存放的记录都是非常多的,需要好多的数据页来存储这些记录。在很多页中查找记录的话可以分为两个步骤:
- 定位到记录所在的页。
- 从所在的页内中查找相应的记录。
在没有索引的情况下,不论是根据主键列或者其他列的值进行查找,由于我们并不能快速的定位到记录所在的页,所以只能从第一个页
沿着双向链表
一直往下找,在每一个页中根据我们上面的查找方式去查找指定的记录。因为要遍历所有的数据页,所以这种方式显然是超级耗时
的。如果一个表有一亿条记录呢?此时索引
应运而生。
1.3.2、设计索引
建一个表:
1 |
|
这个新建的index_demo
表中有2个NT类型的列,1个CHAR(1)类型的列,而且我们规定了c1列为主键,这个表使用Compact
行格式来实际存储记录的。这里我们简化了index_demo表的行格式示意图:
我们只在示意图里展示记录的这几个部分:
record_type
:记录头信息的一项属性,表示记录的类型,0
表示普通记录、2
表示最小记录、3
表示最大记录、1
暂时还没用过,下面将next_record
:记录头信息的一项属性,表示下一条地址相对于本条记录的地址偏移量,我们用箭头来表明下一条记录是谁。- 各个列的值:这里只记录在
index_demo
表中的三个列,分别是c1、c2和c3。 - 其他信息:除了上述3种信息以外的所有信息,包括其他隐藏迈列的值以及记录的额外信息。
将记录格式示意图的其他信息项暂时去掉并把它竖起来的效果就是这样:
把一些记录放到页里的示意图就是:
1.一个简单的索引设计方案
我们在根据某个搜索条件查找一些记录时为什么要遍历所有的数据页呢?因为各个页中的记录并没有规律,我们并不知道我们的搜索条件匹配哪些页中的记录,所以不得不依次遍历所有的数据页。所以如果我们想快速的定位到需要查找的记录在哪些数据页
中该咋办?我们可以为快速定位记录所在的数据页而建立一个目录
,建这个目录必须完成下边这些事:
下一个数据页中用户记录的主键值必须大于上一个页中用户记录的主键值。
假设:每个数据页最多能存放3条记录(实际上一个数据页非常大,可以存放下好多记录)。有了这个假设之后我们向index_demo
表插入3条记录:1
INSERT INTO index_demo VALUES(1, 4, 'u'),(3, 9, 'd'),(5, 3, 'y');
那么这些记录已经按照主键值的大小串联成一个单向链表了,如图所示:
从图中可以看出来,index_demo
表中的3条记录都被插入到了编号为10的数据页中了。此时我们再来插入一条记录:
1 |
|
因为页10
最多只能放3条记录,所以我们不得不再分配一个新页:
注意,新分配的数据页编号
可能升并不是连续的。它们只是通过维护着上一个页和下一个页的编号而建立了链表
关系。另外,页10
中用户记录最大的主键值是5
,而页28
中有一条记录的主键值是4
,因为5 > 4
,所以这就不符合下一个数据页中用户记录的主键值必须大于上一个页中用户记录的主键值的要求,所以在插入主键值为4的记录的时候需要伴随着一次记录移动
,也就是把主键值为5的记录移动到页28中,然后再把主键值为4的记录插入到页10中,这个过程的示意图如下:
这个过程表明了在对页中的记录进行增删改操作的过程中,我们必须通过一些诸如记录移动
的操作来始终保证这个状态一直成立:下一个数据页中用户记录的主键值必须大于上一个页中用户记录的主键值。这个过程我们称为页分裂
。
给所有的页建立一个目录项。
由于数据页的
编号可能是不连续
的,所以在向index_demo表中插入许多条记录后,可能是这样的效果:因为这些
16KB
的页在物理存储上是不连续
的,所以如果想从这么多页中根据主键值快速定位某些记录所在的页
,我们需要给它们做个目录
,每个页对应一个目录项,每个目录项包括下边两个部分:- 页的用户记录中最小的主键值,我们用
key
来表示。 - 页号,我们用
page_no
表示。
所以我们为上边几个页做的目录就像这样子:
以
页28
为例,它对应目录项2
,这个目录项中包含着该页的页号28
以及该页中用户记录的最小主键值5
。我们只需要把几个目录项在物理存储器上连续存储(比如:数组),就可以实现根据主键值快速查找某条记录的功能了。比如:查找主键值为20
的记录,具体查找过程分两步:- 先从目录项中根据
二分法
快速确定出主键值为20
的记录在目录项3
中(因为12 < 20 < 299
),它对
应的页是页9
。 - 再根据前边说的在页中查找记录的方式去
页9
中定位具体的记录。
- 页的用户记录中最小的主键值,我们用
至此,针对数据页做的简易目录就搞定了。这个目录有一个别名,称为索引
。
2、InnoDB中的索引方案
①迭代1次:目录项纪录的页
上边称为一个简易的索引方案,是因为我们为了在根据主键值进行查找时使用二分法
快速定位具体的目录项而假 设
所有目录项都可以在物理存储器上连续存储
,但是这样做有几个问题:
- InnoDB是使用页来作为管理存储空间的基本单位,最多能保证
16KB
的连续存储空间,而随着表中记录数量的
增多,需要非常大的连续的存储空间
才能把所有的目录项都放下,这对记录数量非常多的表是不现实的。 - 我们时常会对
记录进行增删
,假设我们把页28
中的记录都删除了,那意味着目录项2
也就没有存在的必要
了,这就需要把目录项2后的目录项都向前移动一下,这样牵一发而动全身的操作效率很差。
所以,我们需要一种可以灵活管理所有目录项
的方式。我们发现目录项其实长得跟我们的用户记录差不多,只不过目录项中的两个列是主键
和页号
而已,为了和用户记录做一卞区分,我们把这些用来表示目录项的记录称为目录项记录
。那InnoDB怎么区分一条记录是普通的用户记录
还是目录项记录
呢?使用记录头信息里的record_type
属性,它的各个取值代表的意思如下:
0
:普通的用户记录1
:目录项记录2
:最小记录3
:最大记录
我们把前边使用到的目录项放到数据页中的样子就是这样:
从图中可以看出来,我们新分配了一个编号为30的页来专门存储目录项记录。这里再次强调目录项记录和普通的用户记录的不同点:
- 目录项记录的
record_type
值是1,而普通用户记录的record_type
值是0。 - 目录项记录只有 主键值和页的编号 两个列,而普通的用户记录的列是用户自己定义的,可能包含很多列 ,另外还有InnoDB自己添加的隐藏列。
- 了解:记录头信息里还有一个叫min_rec_mask的属性,只有在存储目录项记录的页中的主键值最小的 目录项记录 的 min_rec_mask 值为 1 ,其他别的记录的 min_rec_mask 值都是 0 。
相同点:两者用的是一样的数据页,都会为主键值生成 Page Directory (页目录),从而在按照主键值进行查找时可以使用 二分法 来加快查询速度。
现在以查找主键为 20 的记录为例,根据某个主键值去查找记录的步骤就可以大致拆分成下边两步:
- 先到存储 目录项记录 的页,也就是页30中通过 二分法 快速定位到对应目录项,因为 12 < 20 < 209 ,所以定位到对应的记录所在的页就是页9。
- 再到存储用户记录的页9中根据 二分法 快速定位到主键值为 20 的用户记录。
② 迭代2次:多个目录项纪录的页
虽然说目录项记录
中只存储主键值和对应的页号,比用户记录需要的存储空间小多了,但是不论怎么说一个页只有16KB
大小,能存放的目录项记录
也是有限的,那如果表中的数据太多,以至于一个数据页不足以存放所有的目录项记录
,如何处理呢?
这里我们假设一个存储目录项记录的页最多只能存放4条目录项记录
,所以如果此时我们再向上图中插入一条主键值为320的用户记录的话,那就需要分配一个新的存储目录项记录
的页:
从图中可以看出,我们插入了一条主键值为320
的用户记录之后需要两个新的数据页:
- 为存储该用户记录而新生成了
页31
。 - 因为原先存储目录项记录的
页30的容量已满
(我们前边假设只能存储4条目录项记录),所以不得不需要一个新的页32
来存放页31
对应的目录项。
现在因为存储目录项记录的页不止一个,所以如果我们想根据主键值查找一条用户记录大致需要3个步骤,以查找主键值为20
的记录为例:
确定
目录项记录页
我们现在的存储目录项记录的页有两个,即页30
和页32
,又因为页30
表示的目录项的主键值的范围是『1,320』,页32表示的目录项的主键值不小于320
,所以主键值为20
的记录对应的目录项记录在页30
中。通过目录项记录页
确定用户记录真实所在的页
。在一个存储
目录项记录
的页中通过主键值定位一条目录项记录的方式说过了。在真实存储用户记录的页中定位到具体的记录。
③ 迭代3次:目录项记录页的目录页
如果我们表中的数据非常多则会产生很多存储目录项记录的页
,那我们怎么根据主键值快速定位一个存储目录项记录的页呢?那就为这些存储目录项记录的页再生成一个更高级的目录
,就像是一个多级目录一样,大目录里嵌套小目录
,小目录里才是实际的数据,所以现在各个页的示意图就是这样子:
如图,我们生成了一个存储更高级目录项的页33
,这个页中的两条记录分别代表页30和页32,如果用 户记录的主键值在 『1,320』
之间,则到页30中查找更详细的目录项记录,如果主键值不小于320
的 话,就到页32中查找更详细的目录项记录。
随着表中记录的增加,这个目录的层级会继续增加,如果简化一下,那么我们可以用下边这个图来描述它:
这个数据结构,它的名称是B+树
。
④ B+Tree
不论是存放用户记录
的数据页,还是存放目录项记录
的数据页,我们都把它们存放到B+树这个数据结构中了,所以我们也称这些数据页为节点
。从图中可以看出,我们的实际用户记录其实都存放在B+树的最底层的节点上,这些节点也被称为叶子节点
,其余期来存放目录项
的节点称为非叶子节点
或者内节点
,其中B+树最上边的那个节点也称为根节点
。
一个B+树的节点其实可以分成好多层,规定最下边的那层,也就是存放我们用户记录的那层为第0
层, 之后依次往上加。之前我们做了一个非常极端的假设:存放用户记录的页最多存放3条记录
,存放目录项记录的页最多存放4条记录
。其实真实环境中一个页存放的记录数量是非常大的,假设所有存放用户记录 的叶子节点代表的数据页可以存放100条用户记录
,所有存放目录项记录的内节点代表的数据页可以存放1000条目录项记录
,那么:
- 如果B+树只有1层,也就是只有1个用于存放用户记录的节点,最多能存放
100
条记录。 - 如果B+树有2层,最多能存放
1000×100=10,0000
条记录。 - 如果B+树有3层,最多能存放
1000×1000×100=1,0000,0000
条记录。 - 如果B+树有4层,最多能存放
1000×1000×1000×100=1000,0000,0000
条记录。相当多的记录!
你的表里能存放 100000000000 条记录吗?所以一般情况下,我们用到的 B+树都不会超过4层 ,那我们通过主键值去查找某条记录最多只需要做4个页面内的查找(查找3个目录项页和一个用户记录页),又因为在每个页面内有所谓的 Page Directory (页目录),所以在页面内也可以通过 二分法 实现快速 定位记录。